Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep learning–driven imaging of cell division and cell growth across an entire eukaryotic life cycleKellogg, Douglas (Ed.)The life cycle of eukaryotic microorganisms involves complex transitions between states such as dormancy, mating, meiosis, and cell division, which are often studied independently from each other. Therefore, most microbial life cycles are theoretical reconstructions from partial observations of cellular states. Here we show that complete microbial life cycles can be directly and continuously studied by combining microfluidic culturing, life cycle stage-specific segmentation of micrographs, and a novel cell tracking algorithm, FIEST, based on deep learning video frame interpolation. As proof of principle, we quantitatively imaged and compared cell growth and the activity state of the cell division kinase, Cdk1, across the life cycle of Saccharomyces cerevisiae for up to three sexually reproducing generations. Our analysis of S. cerevisiae's life cycle provided the following new insights: 1) the accumulation of cell cycle regulators, such as Whi5, is tailored to each life cycle stage; 2) cell growth always preceded exit from nonproliferative states in our conditions; 3) the temporal coordination of meiotic events is the same across sexually reproducing populations when each generation is exposed to same conditions; 4) information such as cell size and morphology resets after each sexual reproduction cycle. Image processing and tracking algorithms are available as the Python package Yeastvision, which could be used study pathogens such as Candida glabrata, Cryptococcus neoformans, Colletotrichum acutatum, and other unicellular systems.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Deep learning-driven imaging of cell division and cell growth across an entire eukaryotic life cycleAbstract The life cycle of biomedical and agriculturally relevant eukaryotic microorganisms involves complex transitions between proliferative and non-proliferative states such as dormancy, mating, meiosis, and cell division. New drugs, pesticides, and vaccines can be created by targeting specific life cycle stages of parasites and pathogens. However, defining the structure of a microbial life cycle often relies on partial observations that are theoretically assembled in an ideal life cycle path. To create a more quantitative approach to studying complete eukaryotic life cycles, we generated a deep learning-driven imaging framework to track microorganisms across sexually reproducing generations. Our approach combines microfluidic culturing, life cycle stage-specific segmentation of microscopy images using convolutional neural networks, and a novel cell tracking algorithm, FIEST, based on enhancing the overlap of single cell masks in consecutive images through deep learning video frame interpolation. As proof of principle, we used this approach to quantitatively image and compare cell growth and cell cycle regulation across the sexual life cycle ofSaccharomyces cerevisiae. We developed a fluorescent reporter system based on a fluorescently labeled Whi5 protein, the yeast analog of mammalian Rb, and a new High-Cdk1 activity sensor, LiCHI, designed to report during DNA replication, mitosis, meiotic homologous recombination, meiosis I, and meiosis II. We found that cell growth preceded the exit from non-proliferative states such as mitotic G1, pre-meiotic G1, and the G0 spore state during germination. A decrease in the total cell concentration of Whi5 characterized the exit from non-proliferative states, which is consistent with a Whi5 dilution model. The nuclear accumulation of Whi5 was developmentally regulated, being at its highest during meiotic exit and spore formation. The temporal coordination of cell division and growth was not significantly different across three sexually reproducing generations. Our framework could be used to quantitatively characterize other single-cell eukaryotic life cycles that remain incompletely described. An off-the-shelf user interfaceYeastvisionprovides free access to our image processing and single-cell tracking algorithms.more » « less
An official website of the United States government
